# Adding and Subtracting Polynomials



# Hot Words

Monomial is a real number, variable, or a <u>product</u> of a real number and one or more variables with whole number exponents

Examples of monomials:

18

 $-4x^2$  2.5xy<sup>3</sup>  $\frac{a}{3}$ 

The <u>degree</u> of a monomial is the <u>Sum</u> of the exponents of its variables. The degree of a constant (other than zero) is \_\_\_\_\_. (Zero has no degree.)

### FINDING THE DEGREE OF A MONOMIAL:

Find the degree of each of the monomials:

B.  $4x^2y^5$  2+5=7 C. 7

Z

### **ADDING AND SUBTRACTING MONOMIALS:**

To add or subtract monomials they must be \_\_\_\_\_ terms.

D.  $-6x^4 + 11x^4 = \frac{(-6+11)x^4 - 5x^4}{5x^4}$  E.  $2x^2y^4 - 7x^2y^4 = \frac{(2-7)x^2y^4}{5x^2y^4} - \frac{5x^2y^4}{5x^2y^4}$ 

F.  $2x^2 + 7x^2 = \frac{(2+7)x^2 - 9x^2}{}$  G.  $8x^2y - 3x^2y = \frac{(8-3)x^2y - 5x^2y}{}$ 

\* Add Subtract the coefficients of like terms.

Practice: Try these on your own:

Find the degree of each monomial.

8a<sup>3</sup> \_\_\_\_\_ 2. 2b<sup>8</sup>c<sup>2</sup> \_\_\_\_\_ 3.-3 \_\_\_ 4. 0 \_\_\_\_

### Simplify:

 $2m^3n^3 + 9m^3n^3 =$ 

6. 3t<sup>4</sup> + 11t<sup>4</sup>\_\_\_\_\_

7.  $30v^4w^3 - 12v^4w^3 =$ \_\_\_\_\_

8.  $5bc^4 - 13bc^4 =$ \_\_\_\_\_

## Lesson 8-1

# Adding and Subtracting Polynomials

### CLASSIFYING POLYNOMIALS

A polynomial is a monomial or a sum of monomials. The standard a polynomial means the degrees of it monomial terms decrease from left to right. The degree of a polynomial in one variable is the same as the degree of the monomial with the greatest exponent.

A polynomial can be named based on its degree or the number of terms is contains.

| Polynomial         | Degree | Name Using<br>Degree | Number<br>of Terms | Name Using<br>Number of Terms |
|--------------------|--------|----------------------|--------------------|-------------------------------|
| 6                  | 0      | constant             |                    | monomial                      |
| 5x + 9             | 1      | linear               | 2                  | binomial                      |
| $4x^2 + 7x + 3$    | 2      | quadratic            | 3                  | trinomial                     |
| 2x <sup>3</sup>    | 3      | cubic                | . 1                | monomial                      |
| $8x^4 - 2x^3 + 3x$ | 4      | fourth degree        | 3                  | trinomial                     |

Write each polynomial in standard form. What is the name of the polynomial based on its degree and number of terms?

H. 
$$6 + 2x^2 = \sqrt{x^2 + 6}$$
 Place terms in order

This is a quadratic binomial

$$6 + 2x^2 = \frac{3x^2 + 6}{3x^2 + 6}$$
 Place terms in order 1.  $2 + 3x^2 + x^2 + 4x^3 = \frac{-4x^3 + 3x^2 + x^2 + 3}{3x^2 + x^2 + 3x^2 + 2}$ 

$$= \frac{-4x^3 - 3x^2 + x^2 + 2}{3x^2 + 2}$$

$$= \frac{-4x^3 - 3x^2 + 2}{3x^2 + 2}$$
(simplify

This is a cubic trinomial

### Practice:

Write each polynomial in standard form. Then name based on degree and number of terms.

10. 
$$6x^2 - 13x^2 - 4x + 4 =$$

11. 
$$3z^4 - 5z - 2z^2 =$$

#### **ADDING POLYNOMIALS**

Method 1: Add vertically. Line up like terms. Then add the coefficients.

$$(2x^{2} + 120x) + (-0.5x^{2} - 300x - 8000) \qquad 2x^{2} + 120x -0.5x^{2} - 300x - 8000 1.5x^{2} - 180x - 8000$$

Method 2: Add horizontally. Group like terms. Then add the coefficients.

$$(-12x^{3} + 106x^{2} - 241x + 4477) + (14x^{2} - 14x + 1545)$$

$$-12x^{3} + (106x^{2} + 14x^{2}) + (-241x + -14x) + (4477 + 1545)$$

$$-12x^{3} + 120x^{2} - 255x + 6022$$

#### **SUBTRACTING POLYNOMIALS**

Method 1: Subtract vertically. Line up like terms. Change each sign of the second polynomial. Then add the coefficients.

$$(2x^{3} + 4x^{2} - 3x) - (6x^{3} + 5x^{2} - 4) \qquad 2x^{3} + 4x^{2} - 3x \qquad 2x^{3} + 4x^{2} - 3x \\ - 6x^{3} + 5x^{2} - 4 \qquad + \frac{-6x^{3} - 5x^{2}}{-4x^{2} - x^{2} - 3x} + 4$$

Method 2: Subtract horizontally. Change each sign of the second polynomial. Group like terms. Then add the coefficients.

$$(x^{3} - 3x^{2} + 5x) + (7x^{3} + 5x^{2} + 12) = (x^{3} - 3x^{2} + 5x) + (-7x^{3} + -5x^{2} + 12)$$

$$= (x^{3} + -7x^{3}) + (-3x^{2} + -5x^{2}) + 5x + 12$$

$$= -6x^{3} - 8x^{2} + 5x + 12$$

Practice:

12. 
$$6x^2 + 7$$
 13.  $(5x^2 + 3) + (15x^2 + 2)$  14.  $6x^3 + 17$  
$$- (4x^3 + 9)$$

15. 
$$(14h^4 + 3h^3) - (9h^4 + 2h^3)$$

